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1. Introduction: underwriting cycles
due to random surrounding and due to competition
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Long-term variations called “business cycles”, are typically common for the most insurers
and have several potential causes.

Understanding the driving forces of the underwriting cycles is a paramount theoretical and
important practical problem.

� Cycles attributed to the fluctuations due to random surroundings, to volatile interest
rates, or to random up- and down-swings of the risk exposure in the portfolio. Deficiencies
are introduced by the exterior ambiguities limited by the so-called scenarios of nature.

• Such fluctuations can not be foreseen and their dynamics is known deficiently since its
origin used to be exogenous with respect to the insurance industry.

• It causes inevitable errors in the rate making, and irregularly cyclic underwriting process
ensues.

• Adaptive control strategies fighting back cycles due to scenarios of nature were proposed
in the multiperiod framework

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .
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� Cycles attributed to the strategies of aggressive insurers seeking for greater market
shares, and by the consequent industry response.

• At the first stage, the response lies in concerted reduction of the rates, sometimes below
the real costs of insurance.

• This makes some companies ruined, and agrees with the observation that insurance cycles
are correlated with clustered insolvencies.

• For instance (see [Feldblum 2007] with reference on Best’s Insolvency Study [Best’s
1991]), US industry-wide combined ratios peaked at 109% in 1975 and 117% in 1984. The
insurance failure rate, or the ratio of insolvencies to total companies, peaked at 1.0% in 1975
and 1.4% in 1985.

• Insolvencies appear a driving force behind the competition–originated cycles.

• After elimination of the exceedingly aggressive and unwise agents, or just weaker carriers,
the prices increase uniformly over the industry.

• The upswing phase of the cycle follows.
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2. Price in the years of soft and hard market and
portfolio size functions

• The insurance price P M prevailing in the market is called market price, or market price
factor.

• The year of soft market occurs for a particular insurer when the market price factor is
below the averaged losses EY , i.e. as EY > P M . The year of hard market for a particular
insurer occurs otherwise, i.e. as EY < P M .

• The insurer applies maintaining market share control if P = P M . The insurer applies
conserving capital control if P = EY . The insurer applies mixed control, if P M < P < EY ,
as P M < EY (soft market), and EY < P < P M , as EY < P M (hard market).

• Without lack of generality1, the set P of price controls introduced above may be written
as

Pγ = γP M + (1 − γ)EY, γ ∈ [0, 1],

with P1 = P M and P0 = EY .

1In the case of soft market (i.e., EY > P M ) prices P below P M cause excessive danger of ruin, while prices P above EY yield excessively high rate of elimination of
portfolio. Both are claimed unreasonable. The similar arguments are true in the case of hard market.
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• For γ ∈ [0, 1] and for the insurer’s price Pγ ∈ P, the value

dγ = Pγ − P M = (1 − γ)(EY − P M)

is called insurer’s price deficiency with respect to the market price P M .

• For γ ∈ [0, 1] and for the prices Pγ ∈ P with deficiency dγ = Pγ − P M , introduce the
family

L = {λdγ(s), 0 � s � t}
of continuous non-negative functions of time, called portfolio size functions.

• Assume that λdγ(0) = λ. The value λ is referred to as the initial portfolio size.

• In the case of dγ = 0 (neutral market or maintaining market share control, P1 = P M)
set λdγ(s) ≡ λ, 0 � s � t.

• When dγ > 0 (soft market and γ ∈ [0, 1)), the portfolio size functions λdγ(s) must be
monotone decreasing in s and λdγ1

(s) < λdγ2
(s) for all 0 � s � t, as dγ1 > dγ2.

• When dγ < 0 (hard market and γ ∈ [0, 1)), the portfolio size functions λdγ(s) must be
monotone increasing in s and λdγ1

(s) < λdγ2
(s) for all 0 � s � t, as dγ1 > dγ2.
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3. Portfolio size models in the years of soft and
hard market

• Selecting L, wise is to address to practice.

• [Subramanian 1998], p. 39:

“Surveys of policyholders have consistently demonstrated some reluctance to
switch insurers. In a survey of 2462 policyholders by Cummins et al. [Cum-
mins et al. 1974], 54% of respondents confessed never to have shopped around
for auto insurance prices. To the question “Which is the most important factor in
your decision to buy insurance?”, 40% responded the company, 29% the agent,
and only 27% the premium. A similar survey of 2004 Germans (see [Schlesinger
et al. 1993]) indicated that, despite the fact that 67% of those responding knew
that considerable price differences exist between automobile insurers, only 35%
chose their carrier on the basis of their favorable premium. Therefore, we will
assume that, given the opportunity to switch for a reduced premium, one-third of
the policyholders will do so”.
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Following that remark, assume that in the year of hard market, i.e. as dγ > 0,

λdγ(s) = λ · rdγ(s), 0 � s � t, γ ∈ [0, 1],

where

• 0 � rdγ(s) � 1 is the rate of those who remained in the portfolio by time s � t,

• mdγ(s) = 1 − rdγ(s) is the complementary rate function by time s � t,

• mdγ = mdγ(+∞) is the ultimate rate of migrants (which does not exceed one-third).

For example, introduce the rate function rdγ(s), 0 � s � t,

• with exponential outgo of migrants,

rdγ(s) = (1 − mdγ)︸ ︷︷ ︸
ultimate

remainders

+ mdγ︸︷︷︸
ultimate
migrants

· e−s︸︷︷︸
portion of not
yet migrated

= 1 − mdγ︸︷︷︸
ultimate
migrants

· (1 − e−s)︸ ︷︷ ︸
portion of just

migrated

,

which yields

Λdγ(t) =

∫ t

0

λdγ(s)ds = λ · t · (1 − mdγ)︸ ︷︷ ︸
ultimate

remainders

+ λ · mdγ︸︷︷︸
ultimate
migrants

· (1 − e−t)︸ ︷︷ ︸
portion of just

migrated

.
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In most cases the exponential outgo is unrealistically quick. Of more interest may be

• the power rate function

rdγ(s) = (1 − mdγ)︸ ︷︷ ︸
ultimate

remainders

+ mdγ︸︷︷︸
ultimate
migrants

· (1 + s)−k︸ ︷︷ ︸
portion of not
yet migrated

= 1 − mdγ︸︷︷︸
ultimate
migrants

· (
1 − (1 + s)−k

)︸ ︷︷ ︸
power outgo

, k > 0,

which yields

Λdγ(t) =

∫ t

0

λdγ(s)ds =

{
λt(1 − mdγ) + λmdγ

(
1 − (t + 1)−k+1

)
/(k − 1), k �= 1,

λt(1 − mdγ) + λmdγ ln(1 + t), k = 1.

As k < 1, the migrating part in the portfolio is slow enough and still influences Λdγ(t)
considerably.

• The concept of the set L of portfolio size functions has to be further developed. For
example, it may be sensible to allow dependence of the portfolio size functions on the initial
risk reserve2.

2It is arguable that the outgo of insureds becomes more intensive from e.g., a smaller company, for not to mention such an abstract term as the initial risk reserve. That
may be checked by means of a survey of policyholders.
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4. Annual risk reserve process and annual
probabilities of ruin

Assume that fixed are the families P of the price controls and L of the portfolio size
functions.

• For Pγ ∈ P with deficiency dγ and for the corresponding portfolio size function λdγ ∈ L,
assume that the claim number process is a non-homogeneous Poisson process νγ(s), 0 � s �
t, with the yield (intensity) function

Λdγ(s) =

∫ s

0

λdγ(z)dz, 0 � s � t.

• Assume that Yi, i = 1, 2, . . . , are i.i.d. and independent on the claim number process
νγ(s), 0 � s � t. The claim outcome process associated with the portfolio size function
λdγ ∈ L is the compound non-homogeneous Poisson process

νγ(s)∑
i=1

Yi,

as νγ(s) > 0, or zero, as νγ(s) = 0, 0 � s � t.
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• The premium income process associated with the portfolio size function λdγ ∈ L and
with the premium factor Pγ is the non-random process

Pγ Λdγ(s) = Pγ

∫ s

0

λdγ(z)dz, 0 � s � t.

• The risk reserve process generated by the premium income process and claim outcome
processes is the random process

Ru,γ(s) = u + Pγ Λdγ(s) −
νγ(s)∑
i=1

Yi,

as νγ(s) > 0, or u + Pγ Λdγ(s), as νγ(s) = 0, 0 � s � t. The value u > 0 is called the
initial risk reserve.

Lemma 1. For a homogeneous Poisson process Nλ(s), 0 � s � t, with intensity λ > 0,

Ru,γ(s) = R̂u,γ(τ (s)), 0 � s � t,

where τ (s) = Λdγ(s)/λ, 0 � s � t, is the operational time, and where

R̂u,γ(s) = u + [Pγλ]s −
Nλ(s)∑
i=1

Yi, 0 � s � Λdγ(t)/λ.
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• The probability
P{ inf

0�s�t
Ru,γ(s) < 0}

is called annual probability of ruin, or probability of ruin within time t.

Theorem 1. In the year of soft market (i.e., as EY > P M) the probability

P{ inf
0�s�t

Ru,γ(s) < 0}
is monotone increasing, as γ increases.

• Since inf0�s�t Ru,γ(s) = inf0�s�Λdγ (t)/λ R̂u,γ(s), one has

P{ inf
0�s�t

Ru,γ(s) < 0} = P
{

inf
0�s�Λdγ (t)/λ

R̂u,γ(s) < 0
}

= P
{

inf
0�s�Λdγ (t)/λ

(
u + [EY − γ(

>0︷ ︸︸ ︷
EY − P M)]︸ ︷︷ ︸
Pγ

λs −
Nλ(s)∑
i=1

Yi

)
< 0

}
.

• In the year of soft market Pγ is monotone decreasing, as γ increases, from P0 = EY to
P1 = P M , with P0 > P1, and Λdγ(t) is monotone increasing, as γ increases. Both factors
contribute to a monotone growth of P{inf0�s�t Ru,γ(s) < 0}, as γ increases.
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Theorem 2. Assume that Yi, i = 1, 2, . . . , are i.i.d. exponential with intensity µ (i.e.,
1/µ = EY ) and denote by In(z) the modified Bessel function of nth order, z real and
n = 0, 1, 2, . . . . In that model

P{ inf
0�s�t

Ru,γ(s) < 0} = e−uµ
∑
n�0

(uµ)n

n !
(Pγµ)−(n+1)/2

×
∫ Λdγ (t)

0

n + 1

x
e−(1+Pγµ)xIn+1(2x

√
Pγµ) dx.

The alternative expression is

P{ inf
0�s�t

Ru,γ(s) < 0} = −1

π

∫ π

0

ft(x, u) dx +

{
(1/Pγµ) exp{−uµ(1 − 1/Pγµ)}, Pγµ > 1,

1, Pγµ � 1,

where
ft(x,u) = (Pγµ)−1(1 + (Pγµ)−1 − 2(Pγµ)−1/2 cos x)−1

× exp
{

uµ
(
(Pγµ)−1/2 cos x − 1

)
− Λdγ(t)Pγµ

(
1 + (Pγµ)−1 − 2(Pγµ)−1/2 cos x

)}
×

[
cos

(
uµ(Pγµ)−1/2 sin x

)
− cos

(
uµ(Pγµ)−1/2 sin x + 2x

)]
.
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5. Admissible risk reserve and premium controls

• In the year of soft market, admissible are those controls which do not compel

(A) the annual probability of ruin be larger than a prescribed value α ∈ (0, 1), and
(B) the year-end portfolio size be less than a prescribed lower limit L.

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1st year, PM

1 , α1

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
kth year, P M

k ,αk

· · · .

• Admissible risk reserve (annual) controls

• Admissible premium (annual) controls, the solvency point of view (A)

Theorem 3. For sufficiently small α ∈ (0, 1), for the initial risk reserve u and for the
family L, in the year of soft market allowed are the price controls Pγ ∈ P, γ ∈ [0, γt,u|L(α)],
where γt,u|L(α) is the unique solution of the equation

P{ inf
0�s�t

Ru,γ(s) < 0} = α,

as P{inf0�s�t Ru,1(s) < 0} � α, and γt,u|L(α) = 1, as P{inf0�s�t Ru,1(s) < 0} < α.
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• Put γt,α for γt,u|L(α), set P{inf0�s�t Ru,γ(s) < 0} = ψt(γ) and note that in the year of
soft market ψ+∞(γ) = 1.

Theorem 4. For τγ = −γ(EY − P M)/EY , γ ∈ (0, 1], assume that τγ < 0. Then3

sup
t∈R+

∣∣ψt(γ) − Φ{0,1}((Λdγ(t) − Mτγuµ)/(Sτγ(uµ)1/2))
∣∣ = O(u−1/2), as u → ∞,

where Mτγ = −1/τγ, S2
τγ

= −2/τ 3
γ .

• Introduce φt(γ) = ψ+∞(γ) − ψt(γ) = 1 − ψt(γ) the probability of ultimate ruin after
time t, and rewrite φt(γt,α) = 1 −ψt(γt,α) = 1 − α, which yields

γt,α = φ−1
t (1 − α).

Theorem 5. For τγ = −γ(EY − P M)/EY , γ ∈ (0, 1], set aγ = (1 − √
1 + τγ)

2 and

bγ = 1/
√

1 + τγ. In the framework of Theorem 2, one has τγ < 0 and

φt(γ) =
b
3/2
γ (bτuµ + 1)

2
√

πaγ(Λdγ(t))
3/2

e−uµ(1−bγ)e−aγΛdγ (t) exp
{
− b3

γ(uµ)2

4Λdγ(t)

}{
1 + O(Λ

−1/2
dγ

(t))
}

for u � O(Λ
1/2
dγ

(t)), as t → ∞.

3Under rather general regularity conditions. The result is suitable to apply for u � O(Λ
1/2
dγ

(t)), as t → ∞.
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• Admissible premium (annual) controls, the portfolio size point of view (B)

Theorem 6. For sufficiently small α ∈ (0, 1), for the initial risk reserve u and for the
family L, in the year of soft market allowed are the price controls Pγ ∈ P, γ ∈ [γL, 1], where

γL = inf{γ ∈ [0, 1] : λdγ(t) = L} > 0,

as λd0(t) < L, and γL = 0, as λd0(t) � L.

• Theorems 3–6 yield the set of the annual price controls allowed both from (A) solvency
and (B) portfolio size points of view. This set is

Pγ ∈ P, γ ∈ [0, γt,u|L(α)] ∩ [γL, 1] = [γL, γt,u|L(α)].
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6. Conclusion: a strategy beating the downswing
phase of the cycle

For the family L and for a sequence u, w1, . . . , wk−1 of the initial risk reserve values, as
the (i − 1)st year-end risk reserve is assumed equal to the initial risk reserve in ith year
(i = 2, . . . , k), the adaptive control strategy beating the downswing phase of the insurance
cycle with the period k, generated by the market prices P M

1 > · · · > P M
k > 0, all below the

average risk EY , is

P1(u) = Pγ, γ ∈ [γL, γt,u|L(α1)], if [γL, γt,u|L(α1)] �= ∅,

P2(w1) = Pγ, γ ∈ [γL, γt,w1|L(α2)], if [γL, γt,w1|L(α2)] �= ∅,

· · · · · ·
Pk(wk−1) = Pγ, γ ∈ [γL, γt,wk−1|L(αk)], if [γL, γt,wk−1|L(αk)] �= ∅.

Recall that α1, . . . , αk in

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1st year, PM

1 , α1

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
kth year, P M

k ,αk

· · · ,

are the allowed levels or ruin within the downswing phase of the underwriting cycle.


