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Abstract. In solvency testing, it is always advisably to precede enhanced
modelling and application of DFA methodology by a risk theory insight. Ad-
dressing a simplified model, the author puts forth an adaptive control strategy
designed to balance the requirements of the principles of solvency and equity
in a many-year perspective.

Introduction. Keystone methodology flourished recently under the name of
Dynamic Financial Analysis (DFA), relies upon the idea of Pentikäinen to enhance
modelling of the insurance process and to apply simulation for different strategies.
It is generally accepted that the modern DFA is neither an academic discipline,
nor a single economic or mathematical concept or method. It may be described
as modelling an entire insurance process on a cash flow basis by a comparison of
different management strategies and economic scenarios in terms of risk and return.
This comparison is fulfilled by means of simulation.

It is noteworthy that accentuating the demands of practical management, Pen-
tikäinen voted for a compromise between simulation and analytical methods. One
great advantage of the analytic method, even if it is based on very special assump-
tions — wrote Pentikäinen — is that the interdependence of the variables involved
can be illustrated. Even if the values obtained are far from the values obtained
by the original assumptions, probably at least the shape of the interdependence
can be preliminary studied in this way which makes it easier to understand the
structure of the complicated model. How far these analytical results are valid also
as a solution of the original problem, which is based on more general and more re-
alistic assumptions, probably cannot be estimated. However, the decision variables
obtained analytically can serve initial variables for simulation and the problem of
optimization by means of simulation can, perhaps, be made easier.

Although practising actuaries may be frustrated by complicated analytical ap-
proach, it is tempting to catch more than a mere “numerical fish” with a fishing
net of analytical methods.

A thing before introducing a model further in the paper, is the prerequisite from
insurance regulation. Next is a sketch of a general control model of a multiperiodic
insurance process. Then we address to synthesis of a zone-adaptive strategy and
to its performance, including investment power. The article finishes with a short
discussion.
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Some prerequisite. Article 16(a) of Directive [1] yields an algorithm for cal-
culation of mandatory annual reserves. It is designed to keep the multiperiodic
insurance process inside a strip zone within a series of consecutive years. One be-
lieves that it makes the development of the insurance process stable and complying
with fundamental principles of solvency and equity.

The interest to new solvency and supervisory standards for insurance compa-
nies, to be crystallized into Solvency II, is backed by intensive investigations (see,
e.g. [2], [3], [4]). In particular, the IAIS document “Principles on Capital Adequacy
and Solvency” [3] specifies a set of regulatory principles.

Principle 7 of [3] claims that a control level is required: “insurance regulatory
authorities have to establish a control level, or a series of control levels, that trigger
intervention by the authority in an insurer’s affairs when the available solvency
falls below this control level. These control levels may be supported by a specific
framework or by a more general framework providing the supervisor a latitude
of action.” Principle 8 of [3] claims that a minimum level of capital has to be
specified, and “the regulatory framework has to set out a threshold minimum capital
requirement for companies.”

Seeking for duly established control and minimum capital levels, it is generally
accepted that the insurance regulation and supervision go blind without a compre-
hensive mathematical model, or a set of models, which describe, inter alia, how the
company might collapse.

A control model of multiperiod insurance process. Though optimiza-
tion, e.g., optimal pay-out of dividends, is a traditional control problem of actuarial
mathematics, long-term steady business is the ultimate goal of insurance manage-
ment. The theoretical implement to achieve it is the adaptive control in many-year
models of the insurance process, based on the achievements of the risk theory.

A sensible way to amalgamate the ideas of the adaptive control and collec-
tive risk theories is to address to multiperiodic control model composed of chained
singleperiodic risk models. A trajectory of the insurance process with annual ac-
counting and subsequent annual control may be diagramed as

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .

According to this diagram (for k = 1, 2, . . . ), at the end of (k− 1)-th year the state
variable wk−1 assuming values in a space W, is observed. It describes the insurer’s
position at that moment. Then, at the beginning of k-th year the control rule
γk−1 is applied to choose the control variable uk−1, assuming values in a space U.
Thereupon the k-th year probability mechanism of insurance unfolds; the transition
function of this mechanism is denoted by πk. It defines the insurer’s position at the
end of the k-th year. Particular choice of the elements of the model, including the
spaces U and W, depends on the context.

A zone-adaptive control strategy. In this paper the annual probability
mechanisms of insurance are Poisson–Exponential, or classical, and diffusion. Both
are well known key models of the risk theory.
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(1) Poisson–Exponential, or classical, model : the risk reserve at time t is

Rt(u, τ) = u + (1 + τ)
λ

µ
t− V (t), V (t) =

N(t)∑

i=1

Yi, t > 0,

where u is the initial risk reserve, τ is the adaptive premium loading, {Ti}i>1 and
{Yi}i>1 are i.i.d. and mutually independent, where Ti are the interclaim times and
Yi are the amounts of claims, exponentially distributed with parameters λ > 0 and
µ > 0, respectively, N(t) is the largest n for which

∑n
i=1 Ti 6 t (we put N(t) = 0

if T1 > t). Note that EV (t) = λ
µ t, so that the premium rate is calculated according

to the expected value principle, and DV (t) = 2λ
µ2 t.

(2) Diffusion model : the risk reserve at time t is

Rt(u, τ) = u + (1 + τ)µt− V (t), V (t) = µt + σWt, t > 0,

where u is the initial risk reserve, τ is the adaptive premium loading, Wt is a stan-
dard Brownian motion, µ is the premium rate calculated according to the expected
value principle, i.e., EV (t) = µt, and σ > 0 is a constant diffusion coefficient,
DV (t) = σ2t.

Assume that the duration of the incoming year is t. Introduce the key notion of
target capital value of the risk reserve corresponding to a level 0 < α < 1, denoted
by utarg(α, t). It is a positive solution of the equation

ψt(u; 0) = P{ inf
0<s6t

Rs(u, 0) < 0} = α. (1)

The equation (1) may be called “neutral–loading” or “equitable–reserving”. It
defines the initial risk reserve sufficient to make the probability of ruin equal to α
without resort to premium loading, which may be voted fair by customers.

Bearing in mind the algorithm of Directive [1], which forwards the risk reserve
inside a strip zone by means of adjusting the initial capital, address additionally to
the premium loading. The idea is to have the premium loading monotone increasing,
as the risk reserve passes below an upper level (for simplicity, it will be taken equal
to utarg(α, t)), but does not exceed a lower alarm level (it will be taken from further
solvency considerations). If the lower alarm level is down-crossed, a deficient capital
is borrowed. If the upper level is up-crossed, an excessive capital is reserved. The
positive balance of the reserved–borrowed capital constitutes the investment power
of a zone-adaptive strategy.

Let z be a deviation, either positive or negative, of the past-year-end risk
reserve from utarg(α, t). Case z < 0 means deficit under utarg(α, t), case z > 0
means surplus over utarg(α, t). We refer to

uz,t = utarg(α, t) + z and τz,t = − z

EV (t)
, z ∈ R,

as basic adaptive strategy.
It is noteworthy that Rt(uz,t, τz,t) = utarg(α, t)+ λ

µ t−∑N(t)
i=1 Yi in the classical

risk model and Rt(uz,t; τz,t) = utarg(α, t)−σWt in the diffusion risk model, so that
in both cases

ERt(uz,t, τz,t) = utarg(α, t) for any z ∈ R,

which means that the basic adaptive strategy makes the capital at the time t (i.e., at
the year-end of a single period) equal “in the average” to the target value utarg(α, t).
That observation justifies the name of the target capital value.
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Introduce the notion of lower alarm level of a zone with target value utarg(α, t)
and with prescribed level β of the probability of ruin, 0 < α < β < 1. It is

ulow(α, β, t) = utarg(α, t) + z(α, β, t),

where z(α, β, t) < 0 is a solution of the equation

ψt(uz,t; τz,t) = P
{

inf
0<s6t

Rs(uz,t, τz,t) < 0
}

= β. (2)

One may prove that in the diffusion model, for 0 < α < 1, the solution of
equation (1) may be written as

utarg(α, t) = σ
√

t cα,

where cα = Φ−1
{0,1}(1 − α/2) and, for 0 < α < β < 1, the solution of equation (2)

may be written as
z(α, β, t) = −σ

√
t xα,β ,

where xα,β > 0 is a unique root of the equation

1− Φ{0,1}(cα) + exp{−2x(cα − x)}Φ{0,1}(2x− cα) = β. (3)

Table. Values of xα,β calculated numerically using (3).

β = 110α% β = 120α% β = 130α% β = 140α%

α = 0.1 cα = 1.645 xα,β = 0.7121 xα,β = 0.7522 xα,β = 0.7897 xα,β = 0.8249

α = 0.05 cα = 1.960 xα,β = 0.8360 xα,β = 0.8736 xα,β = 0.9090 xα,β = 0.9422

α = 0.01 cα = 2.576 xα,β = 1.0754 xα,β = 1.1098 xα,β = 1.1423 xα,β = 1.1730

The solutions utarg(α, t) and z(α, β, t) of equations (1) and (2) in the classical
risk model are much more complicated, remaining of order O(

√
t), as t goes to

infinity. We will not go into details but note that, bearing in mind the well know
diffusion approximation, it is not a surprise.

Assume that 0 < α < β < 1 and introduce zone-adaptive control strategy which
consists in selection of the starting capital

a
uz,t =





ulow(α, β, t), z < z(α, β, t),

utarg(α, t) + z, z(α, β, t) 6 z 6 0,

utarg(α, t), z > 0

(4)

and of the premium loading

a
τ z,t =





τmax(α, β, t), z < z(α, β, t),

− z

EV (t)
, z(α, β, t) 6 z 6 0,

0, z > 0,

(5)

where maximal loading is

τmax(α, β, t) = −z(α, β, t)
EV (t)

.

Asset–liability and solvency performance. Consider performance of the
zone-adaptive strategy in terms of return and solvency.



MANAGING SOLVENCY: A RISK THEORY INSIGHT 5

Targeting. For the strategy (4)–(5) and for 0 < α < β < 1, in both classical
and diffusion frameworks

ERt(
a
uz,t,

a
τ z,t) = utarg(α, t) for any z ∈ R.

Hitching the annual models together — we will not go into details which are
transparent, but involve long nested integrals — this results yields that the capital
at the end of every single year equals “in the average” the target value utarg(α, t).

Solvency. For the strategy (4)–(5) and for 0 < α < β < 1, in both classical and
diffusion frameworks

α 6 ψt(
a
uz,t;

a
τ z,t) = P

{
inf

0<s6t
Rs(

a
uz,t,

a
τ z,t) < 0

}
6 β for any z ∈ R.

Hitching the annual models together, this result yields the upper bounds on the
probability of ruin of the multiperiod controlled insurance process. In particular,
for a time-horizon of n identical insurance years

P{ruin within n years} =
n∑

k=1

P{first ruin in year k} 6 nβ.

Premium rates oscillation range. Evidently, the premium rates oscillation range
for a time-horizon of n identical insurance years is bounded from below by zero,
and from above by τmax(α, β, t). In the diffusion framework

τmax(α, β, t) =
σ

µ
√

t
xα,β .

Investment power of the zone-adaptive strategy. For the strategy (4)–
(5), the random variable

Sz,t =





0, ulow(α, β, t) 6 Rt(
a
uz,t,

a
τ z,t) 6 utarg(α, t),

Rt(
a
uz,t,

a
τ z,t)− utarg(α, t), Rt(

a
uz,t,

a
τ z,t) > utarg(α, t),

−(ulow(α, β, t)−Rt(
a
uz,t,

a
τ z,t)), Rt(

a
uz,t,

a
τ z,t) < ulow(α, β, t)

is called annual excess (of either sign) of capital.
Dynamic solvency provisions. For the strategy (4)–(5), in both classical and

diffusion frameworks
ESz,t > 0 for any z ∈ R.

This result shows that application of the zone-adaptive strategy for a time-
horizon of n identical insurance years is favorable (in terms of mean values) to
dynamic solvency provisions, with the tendency to increase rather than to diffuse.

Some generalizations and discussion. Generalizations of the above frame-
work are numerous.

Non-stationary case. We conjectured that the multiperiod insurance process is
composed of the identical annual risk models. The generalization to non-stationary
case, when the annual risks remain known but differ throughout the insurance years,
is straightforward: endow t, the parameters µ, λ (in the classical risk case), µ, σ (in
the diffusion case) and α, β with subscripts indicating the year number, i.e., tk and
µk, λk, σk, αk, βk. The arguments yielding the above results remain essentially the
same, though behaviour of the insurance process may deteriorate.
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Refined control. There may be proposed many other refined control strategies
backed by the insurance practice. A straightforward example of the refined control
is adaptive selection of the control parameters α, β feed-backed on the past history.
Another example addresses solvency control levels (see [4]) which are selected to
be early warnings of ruin.

Non-Markov modelling. Being a function of the previous-year state of the in-
surance company only, the control strategy considered above is called Markov.
Further generalization consists in non-Markov modelling. Non-Markov control is
mentioned, e.g., in Directives [1], where three- and seven-years feedback is applied.

Diffusion approximations. The Brownian motion model is of particular interest
because of its rôle in diffusion approximation, when the discrete random walk is
path-wisely approximated by an appropriate Brownian motion process, for which
the probabilities of interest may be computed exactly. This analysis, aiming con-
siderable weakening of the model assumptions, is strategically clear, but requires
many technicalities.

Scenario stress testing and unknown risk. Particularly important is general-
ization on the case of unknown or incompletely known risk. As in the practice,
where the company has to devise an information system, i.e., a system for observ-
ing the insurance process as it develops, the model has to be supplemented by a
function which returns estimated or forecasted values of the risk parameters, to be
subsequently used in the control.

Investment and inflation. Commonly, some portions of provisions are invested,
and the insurance process is subject to inflation. Investment and inflation may be
included into the model, particularly within diffusion framework.
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