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Summary

The problem of rate making and solvency analysis is considered. A modification
of the collective risk model that amounts to eventual decreasing of the premium
rates, as the initial risk reserve grows, is introduced. Being of greater complexity,
this model could better reflect some important aspects of real life, in particular in
what concerns competitive insurance markets and comprehensive insurance, and
has methodological advances.

The rates of decreasing of the corresponding probabilities of ruin are different
from the classical Cramérian exponent. Though only the case of light tailed distributions
is considered, a great diversity of the rates including in particular power ones,
emerges. The power rates appeared previously only in the context of heavy tailed
claim amounts distributions.
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Résumé

Le problème du calcul de tarif et d’analyse de solvabilité est considéré. Une
modification du modèle collectif de risque qui consiste en réduction progressive de la
mesure des primes d’assurance, avec l’accroissement simultané de réserve de risque
initial, est introduite. Quoique étant plus complifié, ce modèle peut tenir compte
de quelques aspects importants de la pratique réelle d’assurance, particulièrement
concernant des marchés d’assurance compétitif et l’assurance combinée. Outre cela,
ce modèle possède quelques avantages métodologiques.

Les vitesses de la réduction des probabilités de ruine correspondantes sont differentes
de l’exponentiel Cramérienne classique. Bien que le cas des distributions avec la
queue légère est considéré, un large spectre des vitesses qui comprend particulièrement
puissances, se déclare. Cette vitesse etait connue autrefois seulement en cas des
distributions avec la queue lourde.



1. Rate making, solvency and theory of risk

Insurance is a method of coping with risks, while the object of theory of risk is
to give a mathematical analysis of the random fluctuations in an insurance business
and to discuss the various means of protection against their inconvenient effects1.

The basic functions of insurance are underwriting and rating, and the basic
standards in rates making are the following. The rates, which are the prices per
units of exposure, should reflect fairly the risk involved, they should produce a
premium adequate to meet total losses but should not bring unreasonably large
profits, they should be revised often enough to reflect the current costs, and finally
their structure should tend to encourage loss prevention among those who are
insured.

From the viewpoint of the insured person, an insurable risk is one for which the
probability of loss is not so high as to require excessive premiums. The insurer,
however, needs to assign ”loaded” premiums sufficient for business to take its normal
course for a long time. For example, in property insurance, only two-thirds of the
premium covers the expected cost of loss payment, while approximately one-third
covers expenses and profit. These percentage vary somewhat according to the
particular type of insurance, but three major rate elements which are

• the loss cost per unit of exposure,
• the administrative expenses, or ”loading”,
• the profit,

is a rule.
The insurance business is subject to extensive government regulation which is

established rather to protect claimants and policyholders than insurers, and rate
making and minimum standards for financial solvency are typically among the main
aspects of the regulating. Many insurance legislations e.g., in UK, generally accept
that in a business so diverse in character it would be useless to try to safeguard
solvency by imposing minimum premium rates, and that competition offers the best
safeguard to policyholders against the overcharging by the companies.

Most attention from the part of supervision is paid therefore to increasing of
premiums rather than to their decreasing, though the crucial importance of potential
linkages between the different elements of the insurer’s management is recognized.
In particular, the US all industry committee is known to seek to provide for as
much price competition as possible but at the same time to protect the industry
practice of bureau ratemaking because unrestricted competition had resulted in
too many insurers insolvencies. In Japan rates are controlled by voluntary rating
bureaus under government supervision, and law requires rates to be ”reasonable
and nondiscriminatory”.

As a summary, say that the development of a balanced interplay between different
rate elements reflecting

• statutory solvency requirements,
• competition among insurers affecting their internal management strategies,
• market conditions,

1 See Cramér (1930), p. 7.



is among the main problems of insurance.
The classical theory of risk, as a part of Actuarial Science, focuses its attention on

the outflow process, looking first at claim numbers, then at a distribution of claim
size and finally putting these two together into an aggregate claim amounts process.
The income process which is the initial capital + premium income is introduced in
a rather simple way2, growing linearly in time with a constant intensity c. The
resulting surplus process of an insurance business is generated as initial capital +
premium income – outflow.

This bird’s eye view of the insurance business, which comply however with its
basic principles, has been formalized in the notion of the collective risk model of
a nonlife insurance company introduced by F. Lundberg in 1903. Interpreted by
H. Cramér and developed by E. Sparre Andersen and by a number of researchers,
it remains up to now one of the main actuarial models which is concerned with final
business results. Paying no attention to individual policies, this model considers
the risk business of an insurance company as a whole: claims occur from time
to time and have to be settled by the company, while on the other hand the
company receives a continuous flow of risk premiums from the policyholders. An
important problem within this model is to investigate the ruin probability, with the
ruin interpreted as a technical term indicating insolvency.

Mathematically, the surplus process at any time t is described as the risk reserve
process starting at time t = 0,

R(t) = u−
N(t)∑

i=1

Yi + ct, t > 0, (1)

where N(t) = max {n > 1 :
∑n

i=1 Ti 6 t} is the number of claims having occurred
up to time t, u > 0 is the initial capital, or the initial risk reserve, and c > 0 is the
gross risk premium intensity. The sequences of the random variables (r.v.) {Ti}i>1,
being intervals between claims, and {Yi}i>1, being the amounts of claims, satisfy
usually a number of simplifying assumptions e.g., are independent and identically
distributed, or comply with some other distributional requirements.

Ruin occurs at time s if R(s) < 0, and the probability that ruin occurs within
the time interval (0, t] is

ψ(t, u) = P{ inf
0<s6t

R(s) < 0}. (2)

The probability of ultimate ruin is ψ(u) = ψ(+∞, u).
The amount τ = cET1/EY1 − 1 called relative safety loading of the insurance

business is an important characteristic of the risk reserve process. Indeed, since c Ti

is the premium acquired and Yi is the claims amount paid out on the i-th ”step”
which is time between (i − 1)-th and i-th claims, the condition τ > 0 means that
successful ”steps” are persistent. Otherwise, τ < 0 means that successful ”steps”
are rare and, in total, the business is ruinous. Thus, being a positive constant, safety

2 Though derivatives such as investment, borrowing and inflation could be considered on
more advanced stages.



loading makes both probabilities of ultimate ruin ψ(u) and of the ruin within finite
time ψ(t, u) small, as u is sufficiently large.

Common sense is required in deciding whether and to what extent the proposed
model is competent to describe the phenomena of concern3. Even though the
collective risk model is typically inadequate to describe real world phenomena, it is
an element in the more advanced modeling. It could incorporate many factors such
as volatility of the assets and the impact of inflation, which normally affects both
investment behavior and claim settlement, and be concentrated on such problems
as reserve estimation, premium rating and profitability, expenses, reinsurance,
catastrophic claims and interaction with the rest of the insurance market. The
last problem will be among our main concerns.

2. Collective risk model and some aspects of insurance business

Some principal limitations of the collective risk model, as it is described above,
consist both in its basic structure assumptions and in certain technical requirements
on the outflow process, though just the later have attracted most attention. One of
the limitations consists in the fact that we have avoided assuming any dependence
between the initial capital u and the premium rates c, though a typical further
assumption is that the initial capital grows. Evidently, the assumptions on growing
initial capital and on premium income growing linearly in time while the business
runs, accentuate the income process, though the outflow remains independent on
both these assumptions.

Besides some lack of balance in the model, it does not reflect several important
business aspects, a principal of them being that insurer should not be considered
in isolation, without explicit regard for the interplay between other insurers. While
an insurer operating in a competitive insurance market is implicated, a suggestion
prompts that policy prices are among the primary influences of this interplay. We
start with a few reminiscences of the insurance practice to illustrate this idea.

Most insurance managers closely follow the underwriting cycles and increase
rates if the risk business is disquietingly bad. Conversely, if a company with the
initial value u of the risk reserve is managed in such a way that the probability of
ruin at future moments has a value regarded as sufficiently small, after some time
it is very likely that the risk reserve will reach a value considerably larger than the
initial value u. When this situation has arrived, it would obviously be plausible to
decrease rates without increasing the probability of future ruin. This would mean
that either premiums themselves will be decreased, or a larger part of the premiums
actually paid by the policyholders would be at the free disposal of the company, for
bonus or otherwise.

Intuition suggests that a larger company could reduce deliberately its policy
prices, in contrast with a smaller one, for the initial capital seems to be here one of

3 Daykin at al. (1996), p. xiii, wrote: ”There is often perceived to be a wide gap between
practical actuaries and the protagonists of risk theory. This has been exacerbated by the
very theoretical nature of many presentations of risk theory. However, it is the authors’ belief
that practical actuaries must be competent in the analysis of uncertainty, as evidenced by
the British Institute of Actuaries motto certum ex incertis (certainty out of uncertainty).”



the most important factors. Depending on context it could be interpreted as fair
or attractive (customers pay less money) or competitive or even dumping (larger
insurance company dictates its prices) marketing politics. Once this reduction is
considered desirable, the determination of ”safe” limits within which such reduction
could be performed, becomes of primary interest for insurer.

Furthermore, one may consider it plausible to assume premium rates decreasing
as initial capital grows to achieve an improvement matching between premium
income and associated expenditures. For example, performance in collecting premiums
could decrease as a part of a comprehensive risk management process. If to equalize
profits and losses between tariff classes with different outcomes is permissible, a
company has actual premium income as a sum of incomes rendered by premiums
in each class, sometimes showing profits and sometimes losses. Once operating on
a competitive market, a company could prefer not to refuse to deal with certain
classes even if a profit rendered in them separately could be fluctuating or even
negative. Say again that intuition suggests that a small company is not able to do
so, in contrast with a larger one.

Finally, a company which capital is growing, though performance in collecting
premiums decreases due to some grave management errors, suggests the above
mentioned adjustment in the risk model. An example of such an error could be
lack of balance between premium income and associated expenditures, inadmissible
large and permanent expenses (expenses of administration, long-term investments
in non-liquid assets, and so on) loaded into the premiums, etc.4

An attempt to translate these considerations into mathematical statements in
the framework of the collective risk model leads to the following: the safety loading,
as a part of premiums, should depend on the initial capital. Introduce the following
definitions.

Definition 1. We say that the risk premium intensity cu dependent on u is
asymptotically reduced of order τu, if

cu = (1 + τu)EY1/ET1, (3)

with τu > 0, τu → 0, as u →∞.
Evidently, this equality is the same as τu = cuET1/EY1 − 1, and the equivalent

assumption is that the relative safety loading is positive but tending to zero, as
u →∞.

Definition 2. We say that the risk premium intensity cu dependent on u is
asymptotically admissible if ψ(u) → 0, as u → ∞. If ψ(u) → 1, as u → ∞, it
is called asymptotically deficient5.

Asymptotical deficiency means that the probability of ultimate ruin will be
tending to 1 indispensably, and the insurance business will be asymptotically ruinous.
The proof of the fact of admissibility is an important problem. Moreover, to
determine the rates of premiums payable which make the probability ψ(u) to be of

4 An extra hint that a growing capital might lead to decreasing of business activity and
growing of indirect expenditure is the classical Law of Diminishing Returns by von Neumann
and Morgenstern.



a required magnitude, is particularly important.
Premiums dependent on the initial capital seems a reasonable, though merely a

first step in our attempt to introduce finer market effects in the collective risk model.
In some cases it might seem more realistic to assume that premium rates depend
on the current value of the risk reserve6 rather than on the initial capital. However,
to try to approve our assumption note that e.g., in the automobile insurance, rates
are revised annually or even more often, but nevertheless they tend to be out of
date.

From the other side, it is quite clear that a complete and strict simultaneous
treatment of several insurers, taking decisions independently, which is an essence
of the competitive insurance market, adds considerably to the complexity of the
problem, making it largely intractable, even with the use of simulation technique.

We complete this Section with a citation from Daykin et al. that ”stochastic
studies of insurance markets are still at a very preliminary stage and awaiting
substantial further research efforts. Market effects are, however, too important to
leave out and it is worthwhile adopting even a very approximate approaches to
explore the possible impact”7.

3. Probabilities of ultimate ruin in the ”classical” model

Assuming that Yi and Ti, i = 1, 2, . . . , are mutually independent sequences of
independent and exponential r.v. with parameters µ > 0 and λ > 0 respectively,
the relative safety loading transforms into τ = cµ/λ− 1 and is positive if c > λ/µ.
These assumptions define a ”classical” risk model which is a particular case of
the Cramérian risk model8 known to be sufficiently realistic to serve as a first
approximation that may be practically used in many cases.

The ”classical” model is mathematically tractable. It is an exceptional model, for
which an exact formula for the probability of ultimate ruin, going back to Lundberg
(1926) and Cramér (1930),

ψ(u) =
1

1 + τ
exp

{
− µτ

1 + τ
u

}
, (4)

true for any u > 0, is evaluated9.

5 Note that in the framework of variable premium intensities the intermediate cases are
possible (see Example 4 below).

6 See e.g., Cramér (1955), p. 85: ”It might seem natural to introduce a priori a variable
safety loading, laying down the rule that the safety loading received by the risk reserve
would amount to τ(x)dt during a time element dt when the value of the risk reserve is x.
Here τ(x) would be an a priori given function of x, and it seems natural to require that τ(x)
should be never increasing as x increases.”

7 Daykin et al. (1996), p. 373.
8 Once relaxing the assumptions on the distribution of Yi and on the mutual independence

of Yi and Ti, one gets the Cramérian model. The assumption on exponential Ti is however
essential since entails the Poissonian claims arrival.

9 See e.g., (12.3.8) in Bowers et al. (1986).



Evidently, the almost trivial assertion10 that either τ → 0, or τ < 0, implies
ψ(u) = 1, that is, ”certainty of ruin”, gets rather different if τu → 0, as a function
of u →∞.

Example 1. Assume that in the classical risk model λ = µ = 1. First, let the
safety loading be constant, τ = 0.2. Then c = 1.2 and

ψc(u) =
5
6

exp
{
−u

6

}
. (5)

Second, let the safety loading be dependent on u and vanishing as u grows to infinity.
For example, we impose the following rates on the convergence: τu = (lnu)−2.
Evidently,

ψv(u) =
(lnu)2

1 + (ln u)2
exp

{
− u

1 + (lnu)2

}
. (6)

Here and in what follows, subscripts ”c” and ”v” will refer to the models with a
constant and a variable safety loading, respectively.

Evidently, ψc(u∗) = ψv(u∗) for u∗ = exp(
√

5) ≈ 9.35. The values of ψc(u) and
ψv(u) for u > u∗ found numerically are shown in table 1. The discrepancies are
seen to grow significantly, as u is growing, but ψv(u) is in no case tending to 1, as
u →∞.

An evident conclusion is that even if we have the same outflow process and if we
are starting with the same initial capital u = u∗ which equalizes the starting values
of the probabilities of ruin, differences in premium structures lead eventually to a
quite different ruin probabilities dynamics, as u grows.

Table 1Table 1Table 1. Probabilities of ultimate ruin ψc(u)
and ψv(u).

u ψc(u) ψv(u)
9.35 0.1752 0.1752
10.35 0.1484 0.1703
11.35 0.1256 0.1650
12.35 0.1063 0.1597
13.35 0.0900 0.1542
20 0.0297 0.1211
30 0.0056 0.0845
40 0.0001 0.0602

4. Approximations of the probabilities of ruin

Andersen’s, or renewal, risk model is a generalization of the Cramérian model
designed to bring into consideration the possibility of contagion between claims11.

10 See e.g., Bowers et al. (1986), p. 350, 12 line below.
11 The type of contagion, which may be considered, is characterized by the property that

a claim is more likely (or, if that should be wanted, less likely) to occur shortly after another
claim, and that the probability of occurence of claims depends on the time elapsed since the
last claim and only on this quantity (Andersen (1957), p. 219).



Renewal claims arrival processes do not look as a mere analytical overcomplication
though since Andersen’s model has been introduced in 1957, a number of authors
claimed that ”no practical examples of a renewal risk process other than Poissonian
have been produced”12. Indeed, e.g., modern mass media and telecommunication
networks could introduce substantial and sometimes unpredictable dependence into
behavior of policyholders and the a priori assumption on the Poissonian origin of
claims arrival might be suspicious.

An other attempt to go apart from a merely Poissonian claims arrival are Cox
processes which describe insurance schemes where the whole risk situation varies
with variations in the environment. Though the initial motivations were different,
Kingman’s (1964) criterion revealed that Cox and Andersen’s renewal claims arrivals
are identical mathematical objects in special cases.

4.1 Constant safety loading

Put for simplicity Xi = Yi − cTi and assume that Yi and Ti have bounded
probability density functions w.r.t. Lebesgue measure. The famous asymptotic
formulas for the probabilities of ruin in Andersen’s risk model involve adjustment
coefficient κ13 which is a positive solution of the Lundberg equation E exp(κX1) =
1, the basic results being the Lundberg inequality

ψc(u) 6 e−κu, (7)

the Cramér – Lundberg approximation

lim
u→∞

eκuψc(u) = C, (8)

where C is the Cramér – Lundberg constant, and the approximation

lim
u→∞

sup
t>0

|ψc(t, u)eκu − C Φ(mu,D2u)(t)| = 0, (9)

where Φ(mu,D2u)(t) stands for the Normal probability distribution function with
mean mu and variance D2u. The general expressions for m, D2 and C are known
(see e.g., (7.2) in von Bahr (1974)), though except in the ”classical” particular
case14, their calculation is known to be rather difficult.

The Normal approximation (9) was obtained first by von Bahr (1974) and has
been refined in Malinovskii (1994, 1996). Other, e.g., diffusion, approximations for
ψc(t, u) have been developed (see e.g., Asmussen (1984)).

4.2 Variable safety loading

Put Xu,i = Yi − cuTi, i = 1, 2, . . . . For Sn,u =
∑n

k=1 Xu,k, n = 1, 2, . . . , for the
probability distribution function Bu(x, y) = P{Xu,1 6 x, T1 6 y} and for a positive
solution κu of the Lundberg equation

E exp(κuXu,1) = 1 (10)

12 See e.g., Seal (1974), p. 121.
13 See e.g., Bowers et al. (1986), p. 351; having in mind the Cramér – Lundberg

approximation, κ is also termed the Lundberg exponent.
14 Where m = µ/(λτ(1 + τ)), D2 = 2µ/(λ2τ3), and C = 1/(1 + τ).



define
βu(t1, t2) =

∫∫
ei(t1x+t2y)Bu(dx, dy),

ρu(t1, t2) =
∞∑

n=1

1
n

∫∫

x60

ei(t1x+t2y)B
∗n
u (dx, dy),

νi,j
u = EXi

u,1T
j
1 , νi,j

u = EXi
u,1T

j
1 exp(κuXu,1), i, j = 0, 1 . . . ,

where Bu(dx, dy) = eκuxBu(dx, dy) and the asterisk denotes convolution. The
following basic result is the Theorem 2.1 proved in Malinovskii (1997).

Theorem 1. In the risk model with cu asymptotically reduced of order τu assume
that

(1) |βu(t1, t2)|p and |ρu(t1, t2)|p are integrable for some p > 1 and u sufficiently
large,

(2) for a right neighborhood of zero N and for a constant H > 0

sup
u∈N

E exp(hXu,1) < ∞, sup
u∈N

E exp((h + κu)Xu,1) < ∞ for |h| < H, (11)

(3) D2 = limu→0 D2
u > 0.

Then
sup
t>0

∣∣ψv(t, u)− Cue−κuuΦ(muu,D2
uu)(t)

∣∣ = O
(
(τuu)−1/2e−κuu

)
, (12)

as u →∞, where

mu = ν0,1
u /ν1,0

u , D2
u = ((ν0,1

u )2ν2,0
u − 2ν1,0

u ν0,1
u ν1,1

u + (ν1,0
u )2ν0,2

u )/(ν1,0
u )3,

Cu =
1

κuν1,0
u

exp
(
−

∞∑
n=1

1
n

[
P(Sn,u > 0) + EeκuSn,u1(Sn,u60)

])
.

(13)

The proof of (12) is far from being a straightforward extension of (9). Mention, in
passing, that the renewal approach used in von Bahr (1974) to prove (9) encounters
substantial technical difficulties since the series {Xu,i}i>1 of independent r.v. in
the framework of variable safety loading took place of the sequences {Xi}i>1 in the
traditional scheme.

Formulating (14) – (16), we will be based on the Theorems 2.2, 3.1, 3.2, 3.3 and
4.1 proved in Malinovskii (1997). Put τ ′u = τuEY1. While in the ”classical” case
κu, mu, D2

u, Cu were found in a closed form15

κu =
µτu

1 + τu
, mu =

µ

λτu(1 + τu)
, D2

u =
2µ

λ2τ3
u

, Cu =
1

1 + τu
(14)

(see Theorem 2.2 in Malinovskii (1997)), in the general Andersen’s case one has
merely Cu = 1 + o(1),

κu = a1τ
′
u + a2τ

′
u
2 + · · ·+ aNτ ′u

N + · · · ,

mu = m−1τ
′
u
−1 + m0 + · · ·+ mN−1τ

′
u

N−1 + · · · ,

D2
u = v−3τ

′
u
−3 + v−2τ

′
u
−2 + · · ·+ vN−2τ

′
u

N−2 + · · · ,

(15)

15 Quite suggestive; however, the proof of validity of (12) will remain a real problem.



with the series convergent for all sufficiently large u in the conditions of the Theorem 1.
The proof of (15) applies as a main tool the Bürmann–Lagrange theorem. A

technique for calculation of the explicit expressions for ai, mi, vi with i arbitrary,
easy to algorithmize and to set up as a computer routine, has been developed. In
particular, it yields

a1 = 2
γ2
01

γ20
, a2 = 4

γ2
01

γ2
20

(
γ11 − 1

3
γ01γ30

γ20

)
,

a3 = −2
γ2
01

γ2
20

(
γ02 − 4

γ2
11

γ20

)
+ 4

γ3
01

γ3
20

(
γ21 − 2

γ30γ11

γ20

)
− 2

3
γ4
01

γ4
20

(
γ40 − 8

3
γ2
30

γ20

)
,

m−1 = γ01, m0 =
2γ01γ11

γ20
− γ30γ

2
01

3γ2
20

, m1 = −2γ01γ02

γ20
+

γ01

γ2
20

(4γ2
11 (16)

+ 3γ01γ21)− γ2
01

3γ3
20

(γ01γ40 + 10γ11γ30) +
5γ3

01γ
2
30

9γ4
20

, v−3 = γ20, v−2 = 0,

where γij = E(Y1ET1 − T1EY1)iT j
1 , i, j = 0, 1 . . . .

4.3 Three illustrative examples

Example 2. Consider two risk models of the Example 1, the first one corresponding
to the constant safety loading τ = 0.2, while in the second τu = (ln u)−2 is
dependent on u. The equality (14) and the approximations (9), (12) yield for
u sufficiently large

ψc(t, u) ≈ 5
6

exp
{
−u

6

}
Φ(25u/6, 250u)(t), (17)

and

ψv(t, u) ≈ (lnu)2

1 + (ln u)2
exp

{
− u

1 + (lnu)2

}
Φ(u(ln u)4/(1+(ln u)2,2u(ln u)6)(t). (18)

Though the right hand sides of (17) and (18) coincide for u = u∗ ≈ 9.35, the
discrepancy is visible for u = 11.35 (see table 2), gets substantial for u = 13.35 (see
table 3), and grows dramatic for u = 20 (see table 4).

Table 2Table 2Table 2. Approximations for the probabilities of
ruin ψc(t, 11.35) and ψv(t, 11.35).

t ψc(t, 11.35) ψv(t, 11.35)
25 0.0424 0.0525
50 0.0653 0.0755
75 0.0877 0.0994
100 0.1054 0.1212
125 0.1166 0.1385
150 0.1223 0.1506
175 0.1246 0.1581
200 0.1254 0.1620



Table 3Table 3Table 3. Approximations for the probabilities of
ruin ψc(t, 13.35) and ψv(t, 13.35).

t ψc(t, 13.35) ψv(t, 13.35)
50 0.0415 0.0582
100 0.0701 0.0920
150 0.0854 0.1216
200 0.0894 0.1407
250 0.0900 0.1499
300 0.0900 0.1532

Table 4Table 4Table 4. Approximations for the probabilities of
ruin ψc(t, 20) and ψv(t, 20).

t ψc(t, 20) ψv(t, 20)
50 0.0094 0.0310
100 0.0176 0.0434
150 0.0245 0.0573
200 0.0282 0.0714
250 0.0294 0.0846
300 0.0296 0.0959
350 0.0297 0.1049
400 0.0297 0.1114

Example 3. The calculation of κu, mu, D2
u, Cu seems particularly simple in

the ”classical” case. In the general Andersen’s model one ought to apply (15). We
turn now to calculation of the coefficients ai, mi, vi in a model different from the
”classical”.

To have an illustration, consider the most suggestive generalization of the Cramé-
rian model often used in applications and in theoretical contexts: assume that (iid)
amounts of claims {Yi}i>1 are Gamma with shape parameter β > 0 and scale
parameter µ > 0 and that (iid) inter-occurence times {Ti}i>1 are Gamma with
shape parameter α > 0 and scale parameter λ > 0. Moreover, these sequences are
assumed mutually independent.

Recall that the Gamma densities are

fT (x) =
{

λxα−1e−λx/Γ(α), x > 0,

0, x 6 0,
fY (t) =

{
µxβ−1e−µt/Γ(β), t > 0,

0, t 6 0,
(19)

with ET k
1 = α(α + 1) . . . (α + k − 1)λ−k, EY k

1 = β(β + 1) . . . (β + k − 1)µ−k,
k = 1, 2, . . . , so that ET1 = α/λ, EY1 = β/µ, and γij = E(Y1ET1 − T1EY1)iT j

1 ,
i, j = 0, 1 . . . .

One easily has

γij =
αii !
λi

i∑
m=0

(−1)m

m !(i−m) !
λmβm

αmµm
ETm+j

1 EY i−m
1 , (20)



which yields in particular

γ01 =
α

λ
, γ20 =

αβ(α + β)
λ2µ2

, γ11 = − αβ

λ2µ
, γ02 =

α(α + 1)
λ2

,

γ30 =
2αβ(α2 − β2)

λ3µ3
, γ21 =

αβ(α2 + αβ + 2β)
λ3µ2

, γ12 = −2αβ(α + 1)
λ3µ

,

γ40 =
3αβ(α + β)[(α + β)αβ + 2(α2 − αβ + β2)]

λ4µ4
,

and

a1 =
2αµ2

β(α + β)
, a2 = −4αµ3(2α + β)

3β2(α + β)2
, a3 =

2αµ4(14α2 + 17αβ + 5β2)
9β3(α + β)3

. (21)

In the particular case of exponential T1 which corresponds to α = 1, and exponential
Y1, which corresponds to β = 1, the expressions (21) reduce to a1 = µ2, a2 = −µ3,
a3 = µ4, which agrees with the Taylor expansion of the exact expression for κu

given in (14). Furthermore,

m−1 =
α

λ
, m0 = −2µα(α + 2β)

3λβ(α + β)
, m1 =

2µ2α(α2 + 10αβ + 7β2)
9λβ2(α + β)2

,

v−3 =
αβ(α + β)

λ2µ2
, v−2 = 0.

(22)

In the particular case of exponential T1 which corresponds to α = 1, and exponential
Y1, which corresponds to β = 1, the expressions (22) reduce to m−1 = 1/λ,
m0 = −µ/λ, m1 = µ2/λ, v−3 = 2/(λµ)2, v−2 = 0, which agrees with the Taylor
expansions of the exact expressions for mu and D2

u given in (14).
Though this example is intentionally simple, recall that the renewal process N(t)

with Gamma interclaim times is a Cox process if 0 < α 6 1.
Example 4. This example illustrates a great diversity of the new rates of

decreasing of the probabilities of ruin. For simplicity, switch again to the ”classical”
risk model and impose different rates of convergence of τu to zero, as u →∞.

First, let cu = λµ−1(1 + u−1), or let cu be asymptotically reduced of order u−1.
The equality (4) yields

ψv(u) ≈ exp {−µ} , (23)

which shows that the probability of ruin ψv(u) may be tending to an arbitrary real
number in the range [0, 1]. It is never the case of ψc(u) since the limits 0 or 1
constitute the unique alternative.

Second, let cu = λµ−1(1+u−1 ln u), or let cu be asymptotically reduced of order
u−1 ln u. The equality (14) and the approximation (12) yield for u sufficiently large

ψv(u) ≈ u−µ,

ψv(t, u) ≈ u−µΦ(µu2/(λ ln u), 2µu4/(λ2(ln u)3))(t),
(24)

which shows that even though the light tailed distributions are considered, the
probabilities of ruin ψv(u) and ψv(t, u) might be decreasing as a power of u. It is



known that for ψc(u) and ψc(t, u) such rates have emerged only in the case of Y1

with a heavy tailed distribution.
Third, let cu = λµ−1(1 + u−1/2), or let cu be asymptotically reduced of order

u−1/2. The equality (14) yields κu = µu−1/2(1 + u−1/2)−1 ≈ µ(u−1/2 − u−1 +
u−3/2 + . . . ), mu = µu1/2λ−1(1 + u−1/2)−1 ≈ µλ−1(u1/2 − 1 + u−1/2 − u−1 + . . . ),
D2

u = 2µu3/2λ−2, and the approximation (12) yields for u sufficiently large

ψv(u) ≈ exp
{
−µ(u1/2 − 1)

}
,

ψv(t, u) ≈ exp
{
−µ(u1/2 − 1)

}
Φ(µ(u3/2−u+

√
u−1)/λ,2µu5/2/λ2)(t).

(25)

Finally, let cu = λµ−1(1 + u−1/3), or let cu be asymptotically reduced of order
u−1/3. The equality (14) yields κu = µu−1/3(1+u−1/3)−1 ≈ µ(u−1/3−u−2/3+u−1+
. . . ), mu = µu1/3λ−1(1 + u−1/3)−1 ≈ µλ−1(u1/3 − 1 + u−1/3 − u−2/3 + u−1 + . . . ),
D2

u = 2µuλ−2, and the approximation (12) yields for u sufficiently large

ψv(u) ≈ exp
{
−µ(u2/3 − u1/3 + 1)

}
,

ψv(t, u) ≈ exp
{
−µ(u2/3 − u1/3 + 1)

}
Φ(µ(u4/3−u+u2/3−u1/3+1)/λ,2µu2/λ2)(t).

(26)

Figure 1Figure 1Figure 1. Approximations for the probabilities of ruin ψv(u) for τu =
u−1 ln u (thin line), τu = u−1/2 (medium line), τu = u−1/3 (thick line).
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Remark. In fact, which is particularly transparent in (25) and (26), the truncated
expansions

κuu = a1uτ ′u + a2uτ ′u
2 + · · ·+ aMuτ ′u

M + o(1), u →∞,

muu = m−1uτ ′u
−1 + m0u + m1uτ ′u + · · ·+ mMuτ ′u

M + o(1), u →∞,

D2
uu = v−3uτ ′u

−3 + v−2uτ ′u
−2 + v−1uτ ′u

−1 + · · ·+ vMuτ ′u
M + o(1), u →∞,



where M = inf{k > 1 : limu→∞ τk
uu = 0} − 1, are often required to use in (12)

instead of the full expansions (15) and so much the more of (14). This M could be
either infinite if e.g., τu = 1/ ln u, or finite if e.g., τu decreases as any power (1/u)k,
as 0 < k < 1.

We bound ourselves by these examples, though many other illustrations of the
general results could be easily supplied.

5. Some trends of further development

The research within the framework of variable premium intensities has many
trends of further development, both innovative and applied.

To mention one among the later, note that to make a practical implementation
of the approximations of the probabilities of ruin (12) – (16), one has to derive the
coefficients ai, mi, vi explicitly, like in the Example 3 above. It is shown to be a
many stages procedure. First, one has to find out the general expressions like in
(16) and then to calculate the coefficients in a final form. Though these calculations
require rather cumbersome algebra, they could be algorithmized (see Section 3 in
Malinovskii (1997)). To set up these calculations as a computer routine would be
desirable.

We mention a few other directions which might look interesting.

5.1 Heavy tailed interclaim distributions

The author’s conjecture is that the uniform Cramér conditions (11) in Theorem 1
could be replaced by their ”unilateral” counterparts which will make it possible to
consider interclaim times with heavy-tailed distributions.

It would be of a particular importance to compare the approximations (12) – (16)
with the exact values of the probabilities of ruin. An approach to the calculation of
the exact values in case of heavy-tailed T1 and exponential Y1 has been proposed in
Malinovskii (1997 a). These results develop the numerical technique used previously
in case of Poissonian claims arrival processes (see e.g., Seal (1974)).

5.2 Corrected approximations

Numerical comparison of the normal approximation (9) with the exact values of
ψc(t, u) in the ”classical” case performed in Section 4 of Asmussen (1984) shows
that the fit of the approximation improves as u increases, but is rather poor even for
quite large u: it turns out that the dependence on higher cumulants is not negligible.
To produce a correction of (9), Asmussen (1984) suggested an approximation based
on a certain heuristic assumption of independence which is however correct only in
the case of the ”classical” model (see (4.7) in Asmussen (1984)).

In the general Andersen’s model and under the assumptions similar to those
which have been imposed by von Bahr (1974), an Edgeworth-like correction of (9)
has been obtained in Malinovskii (1994):

sup
t>0

∣∣ψc(t, u)eκu − C
(
Φ(mu,D2u)(t)−Q1(t(u))ϕ(mu,D2u)(t)

)∣∣ = o
(
u−1/2

)
, (27)

t(u) = (t − mu)/(Du1/2), Q1(t) = 1
6χ(3,0)(t2 − 1) − η, and χ(3,0), η are certain

constants found both in terms of ladder variables (see Malinovskii (1994), p. 165)



and of Spitzer’s sums (see Malinovskii (1994), p. 166). It was demonstrated that
the approximation (27) coincides up to negligible terms with the Asmussen’s in the
”classical” case when the later is valid.

The author’s conjecture is that the Edgeworth-like correction of (12) similar
to (27) could be obtained by the price of a certain development of the technique
introduced in Malinovskii (1994) and in Malinovskii (1997).

5.3 Large deviations

Both of the approximations (9) and (27), though proved to be uniform in
t > 0, are designed for t = tu such that (tu − mu)/(Du1/2) remains bounded,
as u grows. It means that (9) and (27) are expected to work satisfactorily only in
u1/2-neighborhoods of the line

N(t, u) = {t > 0, u > 0 : t = mu},

as u →∞.
The nature of these difficulties is well known. Indeed, the ruin after tu À mu and

the ruin before 0 < tu ¿ mu, as u →∞, constitute the so-called ”large deviations”
in the ruin problem. These events deserve a separate analysis known to depend
crucially on a number of specific technical assumptions on the model.

The ”large deviations” in the ruin problem were considered in a number of
papers. E.g., Martin-Löf (1986) have derived upper bounds for ψc(t, u) which could
be applied for t and u positive and outside the u1/2-neighborhood of N(t, u). This
result was obtained in the framework of the compound Poisson risk model and for
the claim size distribution with exponential tails. Constructing an approximation
for ψc(t, u), Höglund (1990) took into account the large deviations. His basic
assumption was that the moment generating function of the random vector (Y1, T1)
is finite for some argument within the first quadrant of R × R. The asymptotic
expressions and the upper bounds on the probabilities of ”large deviations” for
heavy tailed interclaim random variables were obtained in Malinovskii (1994).

The author’s conjecture is that the ”large deviations” results similar to those
obtained by Höglund (1990) and by Malinovskii (1996) in the framework of constant
premium intensities, could be extended to the framework of variable ones.
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