ON RISK RESERVE CONDITIONED BY RUIN
V.K. Malinovskii, Russia
Summary

The distribution of the risk reserve at time ¢ conditional on ruin within time ¢
is considered in Andersen’s collective risk model. Approximations for large initial
capital and certain numerical results are presented.

The problem is motivated by the wish to get more insight on the consequences
of ruin during the time interval (0,¢]. In particular, what would be the capital
of a company at the end of the accounting period if, once ruin has occurred, the
insurer’s usual activities continued during this period, including the acceptance of

new business (a sort of going-concern philosophy).
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Résumé

La distribution de la réserve de risque au temps ¢t conditionnelle a la ruine dans
Pintervalle (0,t] est considérée dans le modéle collectif de risque d’Andersen. Des
approximations lorsque la réserve de risque initiale est grande sont introduites et
quelques illustrations numériques sont présentées.

Ce probleme est motivé par le désir d’obtenir une plus grande compréhension
des conséquences de la ruine durant I'intervale de temps (0,¢]. Notamment, quel
sera le capital d’une compagnie vers la fin de la période de comptabilité si, une fois
que la ruine a eu lieu, ’assureur continue ses activités durant toute cette période

et accepte de nouveaux contrats (une sorte de philosophie de devenir inquiet).



1. Introduction

The purpose of this article is to present mathematical results concerning correla-
tion between ruin within time ¢ and the insurer’s surplus at time ¢ in the collective
risk model with light tailed claims and positive safety loading. Motivated by the
question of what the impact of the ruin on the surplus of the insurer will be, we
want to explore the distribution and the moments of the surplus at the end of the
interval (0,¢] conditioned by ruin, provided the business conditions after the ruin
remain unchanged except, possibly, alteration of the premium rate due to first

ruin shock.

This question is of theoretical and of a certain practical interest. The ruin is
not equivalent to insolvency of the insurer. It is an element of an early warning
system for guidance of an insurance project. Some projects are allowable to rel-
atively high probability of ruin. Even the negative surplus at certain times may
not be a sufficient evidence against the inward profitable line of business or the
insurance project if the damage will be covered by the end of the planning period.
This analysis of after-ruin is of interest e.g., for companies with extra capital,
seeking to gain a market share by cutting prices. The underwriting may result in
underreserving in this case, with conscious losses, and even occasional exhausting

of the initially allocated reserves.

Our interest is motivated also by a desire to generalize the collective risk model
over consecutive business years or uneven time periods between premium rates
adjustments. The former depends on supervision which requires the submission
of financial reports on operations on a yearly basis. The later reflects changes in
the world of applications which give rise to the necessity of examining the amount
of surplus on a periodic basis. Bearing in mind the time needed for development
and implementation of amended tariffs, these uneven time periods frequently are

taken on a semiannual, quarterly, or monthly basis. The area of application of



this model seems to have little intersection with the collective risk model where
immediate changes of the premium rate are allowed depending on the value of the
risk reserve (see e.g., Asmussen, Nielsen (1995)).

Mathematically, the problem consists in generalizing of the classical Cramér—

Lundberg approximation for the finite time ruin probability ¥ (¢,u),

lim sup [e*“9(t,u) — Cq)(mlunyu)(t) =0, as u — 00, (1)

(see e.g., von Bahr (1974)) which reveals the expression which approximates the
probability that an intrinsically profitable insurer falls into ruin. The joint distri-
bution of the time of ruin, the surplus immediately before ruin, and the deficit at
ruin were also studied (see e.g., Gerber, Shiu (1998)). We approach the question
of how much the event of ruin endamages the insurer’s capital at the end of the

accounting period in case he is allowed to operate after ruin.
2. Notation and assumptions

Andersen’s risk model comes from the i.i.d. random vectors {(Y;,T;)}i>1, where
T; are the interclaim times and Y; are the amounts of claims, with the probability
distribution function (p.d.f.) By,r(y,t) = P{Y1 < y,T1 < t} and the characteristic
function (ch.f.) By, 7(t1,t2) = Eexp(it1Y1+14t2T1). These random vectors generate

the risk reserve process

Ry(t)=u+cltAw]+bt —tAw] = > ¥, t>0, (2)

=1
where u > 0 is the initial risk reserve, w denotes the time of the first ruin, t Aw =
min{¢,w}, ¢ > 0 is the risk premium rate before the first ruin, b is the risk premium
rate after the first ruin (of course, it may be equal to ¢ which means no premium

rate change after the first ruin), and N(¢) is the largest n for which Y ;" | T; < ¢
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(we put N(¢t) = 0if T1 > t). Consider
C:(]_ —|—T)EY1/ET1, (3)

with 7 called relative safety loading and assume 7 > 0. Evidently, the equality (3)
is equivalent to 7 = cET; /EY; — 1.

Ruin occurs at time s as R,(s) < 0 and the probability that ruin occurs within
the time interval (0,¢] is ¥(¢,u) = Plinfoc,<s Ru(s) < 0].

For « = 1,2,... introduce ii.d. random variables X; = Y; — ¢T; and put
Sn =Y Xi, Vo = >, Y;. For the p.df. B(z,y) = P{X; <z,T; <y} and

for a positive solution s of the Lundberg equation,
Bexp(s<Xy) = 1, @)

introduce an associate p.d.f. by B(dz,dy) = e**B(dz,dy). For notational conve-
nience, introduce the associated sequence {(Yi,Ti)}i>1 of i.i.d. random vectors

having the p.d.f. B(z,y), and S, =Y., X;, U, = >, T;. Put
v = YT, 7 =EX.T., 4,5=0,1.... (5)

For real b introduce
my = 70,1/;1,0, m2(b) —p— 1/1’0/1/0’1,
D% — ((70,1)272,0 o 271,070,171,1 + (71,0)2#,2)/(71,0)3,

Dg — ((1/0’1)21/2’0 o 21/1,01/0,11/1,1 + (1/1’0)21/0’2)/(1/0’1)3, (6)

»r’

C = %exp (—i%[P(Sn >0)‘|‘P(§n < 0)]) )

n=1

and for the Normal distribution and density functions @, ,2)(z) and ¢, »2)(2)

introduce
9(2) = 2+ 9(0,1)(2)® 5.1 (2)- (7)
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Using the Mill’s relation, we have g(z) = z(1 + 9(1)), as z — oo, and using the
approximation @ 1)(z) = %+go(071)(z)(z—|— %z?’ +...), we have g(z) approximated
by (1 — 490%071)(2:))2: + 2¢(0,1)(2) for z in a neighborhood of zero.

3. Approximations

Introduce

P(w;t,u) = P[Ru(t) <w, inf R,(s) < 0].

0<s<t

Evidently, ¥ (+oo;t,u) = ¥(¢,u).

Theorem 1. Suppose that in the collective risk model with T > 0 the character-
istic function By,r(t1,t2) is absolutely integrable and 0 < D1,Dy < oco. Suppose
that up to the first ruin the premium rate ¢ is as in (3) and after ruin it becomes

b. Then, as u — oo,

= 0.

1
lim  sup emlb(w;t,U)—C/ @ (myu,D2u) (2)® (ma(b) [t 2. D2[t—2]) (W) dz
0

U0 >0, wER
The approximation (1) is a particular case of one in Theorem 1.

Theorem 2. Under the conditions of Theorem 1

B[R.(0) | inf Ruls) < 0] = malt)Dvig (7 ) (14 o(),

D[R, (t) [ inf  Rus) < 0] = D2D1fg< ij—“) (1+9(1)),

as u — o0.

Remark 1. If b = ¢, where c is from (3), i.e. the premium rate remains
unchanged after the first ruin and there is no ruin shock, ma(c) = ma, where
ms = 710 /01,

Remark 2. In the particular case of the Poisson/Exponential model the ap-

proximations are easy to express in terms of intensities. Assume that the (i.i.d.)
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amounts of claims {Y;};>1 and the (i.i.d.) inter-occurrence times {T}};>1 are mu-

tually independent and exponential with parameters ¢ > 0 and A > 0 respectively.
Then

c=AX1+71)/p (8)
and (see e.g., (2.5) — (2.7) in Malinovskii (2000))
w=pr/(147),
my = p/(AT(1+ 7)), ma(b) =b—A7/p,
D} =2u/(N°7°) D3 =2X\/u’,
C=1/(1+T).
Evidently, ma(c) = 7A/u. In particular, the approximation for the expectation

E[Ru(t) | infocsct Ruls) < 0] at time point ¢ = myu in this case is

V2ug(0) / V. (10)

Remark 3. The results can be improved in the following directions.

(1) The rate of convergence and corrected approximations as in Malinovskii
(1994) can be obtained by more calculations. This is of much interest
for theoretical insight and for numerical calculations and will be briefly
illustrated in Section 4.

(2) There is still no exact formula for ¥ (w;¢,u) even in the Poisson/Exponential
case (the plausible exact formula for 1 (w;t,u) is a generalization of those
of Theorems 2.3 and 2.4 in Malinovskii (2000)).

(3) The approximations of Theorems 1 and 2 can be generalized in the frame-
work of the safety loading 7 tending to zero as the initial capital u increases.
It is of much interest e.g., for an insurer who develops a competitive strat-
egy which envisages cutting prices. In this framework substantial technical
difficulties are generated by a scheme of series. The technique which over-

comes these difficulties was developed in Malinovskii (2000).
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Remark 4. Straightforward simulation in this context encounters difficulties
since the ruin is a rare event even for moderately large v and moderately small 7.
It requires much care because the accumulated errors might be significant even for
rather accurate random variables generator. The importance sampling method is
suggestive in this framework. The accuracy of numerical simulation is a problem

of a separate interest.
4. Corrected approximations and a numerical example

For simplicity consider in this section ¢ = b. Denote the ladder index N =
inf{n : §,, > 0}, the ladder height # = S and the ladder time point 7 = Un
and put W = E(TEH — HET). Introduce

0. — EH 1 g, — ET ETe **
LT ] _Ee—»# 3’ 27 ] _Re—#H 1 — Ee—»#’
1 E —xH E 3
o= L BT Ew?, gy = 2 (11)

2 1 —Ee»1’ 6k, ’

ks = ETDH — EHCov(H,T).
The following approximation elaborates the first relation of Theorem 2.

Theorem 3. Suppose that in the collective risk model with T > 0 the character-
istic function By,r(t1,t2) is absolutely integrable, 0 < D1, Dy < co and ET} < oo.

Suppose that the premium rate is ¢ as in (3). Then, as u — oo,

E[R.(t) | inf Ry(s) < 0]y(t,u)

sup
0<s<t

>0
0,2
1,0 v
— v (1— 72(1/071)2)1/)(@1/,)
1,0
_ —miu t—miu t—miu
_ wu & MRS Sl Rt
Ce “FK Dy/u ) “””( Dy\/u ) w“””( Dy\/u )]
1/1’0 t— miu t— miu ks ko ET
—Ce *"r——& -0 0
Ce ' oa <°’1>( Diva ) ( Diva ) (2(E7—[)2 3En  En T 2)
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p10 t—miu ET ks ETy
—Ce il g N (e - gL
Ce ™o ®on ( Diva ) ( *T"UEH T (EH) 3TEY1>

Cle— 150 t—miu t—miu P ET 9. 9 ko ‘__( —eu)
© TpwifOO\ DA J\Diva J\EBH 2T EH) I T

Numerical example. Assume that the (i.i.d.) amounts of claims {Y;}i>1
and the (i.i.d.) inter-occurrence times {7;};>1 are mutually independent and ex-
ponential with parameters g > 0 and A > 0 respectively.

Lengthy but straightforward calculations similar to those described in Theo-
rem 2 and Lemma 1 of Malinovskii (1994) (see also pp. 890-891 and p. 907 of
Malinovskii (2000)) applied to Theorem 3 yield the following approximation for
E[Ru(t) | infocsct Ruls) < 0]1/)(t,u) at the time point ¢ = myu with m; from (9):

@ (0)_3—|—37'—|—7'2
N pivn) )

The approximation at the time point ¢t = mju for ¥(¢,u),

Ce_%uq>(071)(0) (

+3/2
Ce g 1)(0) (1 Q:(0) j%—ugw)) , (13)

where
24 72 T+ 2

@1(0) = AT(1+71) T 2A272?

is a corollary of Theorem 1 of Malinovskii (1994). For the conditional expectation

E[Ru(t) | infocsct Ruls) < 0] at the time point ¢ = mju these approximations

U T+ 72 73/2
(%9(0) - %) /(1 — Q1(0) j/%—ug(0)> : (14)

Compare the approximation (10) and the corrected approximation (14) to the

yield

results of direct simulation. For this, simulate N risk reserve trajectories and
calculate the mean value of the risk reserve at the time point ¢ = miu over all

those trajectories which fall below zero at least once within time ¢ = m;u. We
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report the results in the tables below omitting fractional parts. It is seen that the
accuracy of (14) appears better than one of (10). For further improvements one

has to calculate more terms in the expansions (12) and (13).

TABLE l: A=p=1,¢t=99502, v = 500, 7 = 0.005, N = 10000

Simulation runs
1 2 3 4 5 6 7 8

Number of trajectories which fall below zero | 287 | 327 | 325 | 315 | 296 | 278 | 286 | 311

Empirical mean conditioned by ruin 209 | 224 | 242 | 220 | 214 | 207 | 195 | 222
Approximation (10) for the mean 357
Corrected approximation (14) for the mean 261

The data in this table demonstrates a reasonably good accuracy. The poorer
accuracy in the following table is due to a smaller 7 which brings this case within
the scope of the problem mentioned in point (3) of the Remark 3 above. Calcu-
lation of more correction terms which are of a smaller order as v grows, but are

increasing as T decreases, becomes here more important.

TABLE 2: A = pu = 1, ¢t = 499500, w = 500, 7 = 0.001, N = 1000

Simulation runs
1 2 3 4 5 6 7 8

Number of trajectories which fall below zero | 189 | 213 | 190 | 222 | 184 | 227 | 396 | 397

Empirical mean conditioned by ruin 326 | 369 | 346 | 339 | 368 | 358 | 310 | 335
Approximation (10) for the mean 798
Corrected approximation (14) for the mean 442

5. Sketch of the proof

Following von Bahr (1974), introduce the sequence of strict ascending ladder

indices

Ny =inf{n:8S, >0}, N :inf{n>./\/k_1:§n >§N’k_1}, k=2,3,...,
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the sequence of corresponding ladder heights

N

S.f\f1 ZX“ k: Z Yi, k:2,3,...,

i=Ng—1+1
and the sequence of corresponding ladder time points

N,
=Upn, = ZT“ Ti = Z T;, k=2,3,....
i=Ngp_1+1

The following lemma is well known. It follows directly from the fact that v(u),
the time of the first jump of the sequence {?n}n>1 over the level u, is a ladder

index for this sequence.

Lemma 1. Forv(u) =inf{n: S, >u} and vp(u) = inf{m : Hy +- -+ Hpm > u}
V(u):NuB(u)a gu(u):Hl-I_—l_HuB(u)) Uu(u):ﬂ—l_—l_,]:/B(u)

Introduce the density p,(z,z) by the equation

Pn(z,z)dzdz =P (ZH € dz, ZTEdw).

The following lemma is the key point of the proof. It is a generalization of the

— Mz

representation of the ruin probability ¢ (¢,u) = fu fo Pup(w) (2, ) dz dz.

Lemma 2. For p,,)(z,z) =20, fv>0 fy>0 pro(v—v,z—y)P(Hpy1—2z+u €

dv, Tpt1 € dy) the equality

o) 1
P(wit,u) = / e ** / pVB(u)(z,w)P( — VN(t—z) Sw — (2 —u) — b(t — w)) dzdez
u 0
holds true.

The proof of Theorem 1 applies Lemma 2, the Normal approximations with
non-uniform bounds for p, (v — v,z — y) and the Normal approximation for the

distribution of Vi(;—z). The latter were considered in Malinovskii (1993).
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