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Abstract

Bearing in mind the problem of underwriting cycles, two adaptive con-
trol strategies regulating the asset–liability balance in the multiperiod
controlled risk model composed of chained singleperiodic Poisson–Ex-
ponential risk models, are introduced. Solvency performance of these
strategies in terms of the probabilities of ruin is analyzed analytically.
The strategies are similar, but less sophisticated, than the existent com-
pulsory regulatory procedures.
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1. INTRODUCTION

According to Encyclopedia Britannica, “profits in property and liability insurance
have tended to rise and fall in fairly regular patterns lasting between five and seven
years from peak to peak; this phenomenon is termed the underwriting cycle. Stages of
the underwriting cycle may be described as follows: initially, when profits are relatively
high, some insurers, wishing to expand sales, start to lower prices and become more
lenient in underwriting. This leads to greater underwriting losses. Rising losses and
falling prices cause profits to suffer. In the second stage of the cycle, insurers attempt
to restore profits by increasing rates and restricting underwriting, offering coverage
only to the safest risks. These restrictions may be so severe that insurance in some
lines becomes unavailable in the marketplace. Insurers are able to offset a portion of
their underwriting loses through earnings on investments. Eventually the increased
rates and reduced underwriting losses restore profits. At this point, the underwriting
cycle repeats itself.

The general effect of the underwriting cycle on the public is to cause the price of
property and liability insurance to rise and fall fairly regularly and to make it more
difficult to purchase insurance in some years than in others. The competition among
insurers caused by the underwriting cycle tends to create cost bargains in some years.
This is especially evident when interest rates are high, because greater underwriting
losses will, in part, be offset by greater investment earnings.”

Thereby, underwriting cycles are caused by many reasons. One is volatility of
financial, investment and other interfacing markets which future development is known
incompletely or even unknown at the time of decision making. Other is imperfect
management. Third is pure random fluctuations inevitable in the insurance process,
even when information is complete and control is optimal. K.Borch (see [2], p. 451)
observed accordingly that

“the reserve capital of an insurance company can obviously be considered as
a stochastic process, but the laws governing the process will usually be known
only partially. As time passes, the company may acquire more knowledge about
these laws, for instance by statistical analysis of the current claim payments.
The company will then have to decide if, in view of the new knowledge, exist-
ing reinsurance arrangements or plans for future dividend payments should be
changed. In general the problem of the company will be to devise:

(i) An information system: a system for observing the stochastic process as
it develops.

(ii) A decision function: a set of rules for translating the observations into
action.”

The classical collective risk theory subject to many technical restrictions seems
insufficient to explain the nature of underwriting cycles. The frustration of the initial
great hopes was expressed strongly by H. Bohman at the close of his career. Quote
from his farewell interview as retiring Chief Editor of the Scandinavian Actuarial
Journal (see [1], p. 2):

“I was for a long time deeply involved in this theory, working on the probability
of ruin, but I am hesitant over it now . . . From a practical point of view, the
theory of collective risk, as initiated by Filip Lundberg, has missed the point,
because the underlying model is unrealistic, too simplified. For one thing, a



stationary business should give stationary reserves, as predicted by the control
theory.”

It must be observed that H. Cramér did justice to F. Lundberg and pointed in [3]
that problems of that kind were quite clear to the originator of the collective risk
theory. Cramér testified that Lundberg was preoccupied much with the adequacy of
his model:

“In view of certain misconceptions that have appeared it is, however, necessary
to point out that Lundberg repeatedly emphasizes the practical importance of
some arrangement which automatically prevents the risk reserve from growing
unduly. This point is, in fact, extensively discussed in the papers of 1909, 1919
and 1926 – 28. One possible arrangement proposed to this end is to work with
a security factor τ = τ(x) which is a decreasing function of the risk reserve
R(t) = x. Another possibility is to dispose, at predetermined epochs, of part of
the risk reserve for bonus distribution. By either method, the growth of the risk
reserve may be efficiently controlled. What Lundberg does in this connection
is really to work with a rather refined case of what has much later come to be
known as a random walk with two barriers.

From certain quarters, the Lundberg’s theory has been declared to be unreal-
istic because, it is asserted, no limit is imposed on the growth of the risk reserve.
In view of what has been said above, it would seem that these critics have not
read the author they are criticizing. For a non-Scandinavian author there is, of
course, the excuse that most of Lundberg’s works are written in Swedish.”

In the search of a breakthrough, C. Philipson expressed an opinion shared by many
scholars (see [10], p. 68):

“From the development of the classical form [of the risk theory. — V.M.] two
lines of development have branched out, one refers to the generalization of the
fundamental assumptions . . . The other refers to the extensions of the decision
theory . . . These lines of development are, however, all based on the fundamental
conception of the collective risk theory, which was created by Filip Lundberg . . . ”

Relevance of synthesis of the risk theory and adaptive control theory was empha-
sized by K. Borch (see [2], p. 451):

“We have now reached the point where the actuarial theory of risk again joins the
mainstream of theoretical statistics and applied mathematics. Our general for-
mulation of the actuary’s problem leads directly to the general theory of optimal
control processes or adaptive control processes . . .

The theory of control processes seems to be “tailor–made” for the problems
which actuaries have struggled to formulate for more than a century.”

Bearing in mind all these premises, the present contribution introduces two adap-
tive control strategies in the framework of the classical (i.e., Poisson–Exponential with
complete information) multiperiodic risk model.

Both strategies are designed to direct or re-direct the year-after-year annual risk
reserve into a strip around certain target value corresponding to a prescribed value of
the annual probability of ruin, and to keep the actual values of the annual probabilities
of ruin within a certain strip around that prescribed value. The former contributes
to harmonization of the asset–liability balance (regarding the principle of equity), the
later — to the solvency control.



2. MULTIPERIOD INSURANCE PROCESS

A sensible way to amalgamate ideas of the adaptive control and collective risk is
to address to multiperiodic controlled model composed of chained singleperiodic risk
models (see, e.g., [8]). A trajectory of the insurance process with annual accounting
and subsequent annual control may be diagramed as

w0
γ0−→ u0

π1−→ w1︸ ︷︷ ︸
1-st year

· · · πk−1−→ wk−1
γk−1−→ uk−1

πk−→ wk︸ ︷︷ ︸
k-th year

· · · .

According to this diagram (for k = 1, 2, . . . ), at the end of the (k − 1)-th year the
state variable wk−1 is observed; it describes the insurer’s position at that time. Then,
at the beginning of the k-th year the control variable uk−1 is chosen according to
the control rule γk−1, and the k-th year probability mechanism of insurance unfolds.
The transition function of this mechanism is denoted by πk. It defines the insurer’s
position at the end of the k-th year.

It is noteworthy that a procedure of that type, liable however to critics, is the core
of Article 16 [a] in Directives [5]. Controlled models, mainly linear, were considered
by a range of authors (see e.g., [4], [11]).

Good asset–liability control, applying both feed-forward and feed-back arguments,
has to be based on a fair balance of the principles of equity and solvency. It is a clue to
a harmony between the interests of insurer and insured and let the insurance system
operate successfully in the long run, i.e., to be solvent. Means to attain and to preserve
this balance is therefore a major concern of the insurance administration.

3. TWO ADAPTIVE CONTROL STRATEGIES

Consider a singleperiodic risk model which is called Poisson–Exponential or clas-
sical. The annual probability mechanism of insurance comes then from the random
variables {Ti}i>1 and {Yi}i>1, i.i.d. and mutually independent, where Ti are the
interclaim times and Yi are the amounts of claims, exponentially distributed with pa-
rameters λ > 0 and µ > 0. These random variables generate the risk reserve process

Rt(u, τ) = u + ct−
N(t)∑
i=1

Yi, t > 0.

Set

ψt(u, τ) = P{ inf
0<s6t

Rs(u, τ) < 0}, ψ(u, τ) = P{ inf
0<s<∞

Rs(u, τ) < 0}
for the probability of ruin within time t and for the probability of ultimate ruin,
emphasizing dependence on u and τ = (c ET1 − EY1)/EY1 = cµ/λ − 1 called relative
premium loading.

Definition 1. The “target” value uα,t of the risk reserve corresponding to the
prescribed value α ∈ (0, 1) of the probability of ruin, is the value u = uα,t which
satisfies the equation

ψt(u; 0) = α.

Theorem 1. In the Poisson –Exponential risk model the target value uα,t of the
risk reserve corresponding to the prescribed value α ∈ (0, 1) of the probability of ruin



is the solution of the equation∫ π

0

ft(x; u, 0) dx = π(1− α), (1)

where

ft(x; u, 0) = (2(1−cos x))−1 exp
{
(cos x−1)(uµ+2λt)

}[
cos(uµ sin x)−cos(uµ sin x+2x)

]
.

Proof follows from Theorem 2.3 in [7], or Remark 2 in [6]. Numerical calculations
yield the following results.

Table 1. Solutions of equation (1) for µ = λ = 1.

t α = 0.1 α = 0.01 α = 0.001 α = 0.0001

50 16.7422 27.9872 37.2083 45.3298
100 23.5722 38.6811 50.8686 61.4894
150 28.8077 46.8789 61.3408 73.8748
200 33.2197 53.7878 70.1593 84.3084

Let z be a deviation, either positive or negative, of the past-year-end risk reserve
from uα,t. Case z 6 0 means deficit, case z > 0 means surplus. Consider two adaptive
control strategies.

3.1. Control without borrowing. Set

uz = uα,t + z and τz,t = − µ

λt
z. (2)

This choice of uz means starting with the initial capital equal to the past-year-end
risk reserve, no matter what z is, either a surplus over uα,t or a deficit. The later is
reckoned however in the choice of the adaptive loading τz,t, positive for deficit and
negative for surplus.

Bearing in mind that E
( ∑N(t)

i=1 Yi

)
= λt/µ, for the asset–liability balance one has

ERt(uz, τz,t) = uα,t for any z.

It means that the control (2) guarantees that the capital of the company at the time
t is equal “in the average” to the “target” value uα,t.

Introduce

α(z) =
λt

λt− µz
exp

{µ2z (uα,t + z)

λt− µz

}

and put

z∗ =
λt

µ
− 1

2µ
− λt

µ

(
1 +

µuα,t

λt
+

1

4λ2t2

)1/2

.

Applying the expansion (1 + x)1/2 = 1 + x/2 + . . . in the neighborhood of zero, note
that for large t and small uα,tt

−1

z∗ = −uα,t + 1

2
− 1

8µλt
+ . . . .

Theorem 2. For z ∈ [a, b], −uα,t < a < 0 < b < λ
µ
t, and for the control (2)

ψt(uz, τz,t) 6 α(z)1{z<z∗} + α(z∗)1{z>z∗}.



The upper bound of Theorem 2, which proof contains in [9], is illustrated by Fig. 1:
z∗ is the point where the bowl-shaped upper bound for ψt(uz, τz,t), i.e., ψ(uz, τz,t),
achieves its minimum.

-40 -30 -20 -10

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1. Finite time (t = 200, µ = λ = 1) ruin probability ψt(uz, τz,t) and its
upper bound ψ(uz, τz,t) regarded as a functions of z; uz = uα,t + z,
τz,t = − µ

λt
z, target value is uα,t = 38.6811 (vertical line shows the

value −uα,t bounding the range of z from below) and the prescribed
value of the probability of ruin is α = 0.01.

3.2. Control with borrowing. Set

ūz =

{
uα,t, z 6 0,

uα,t + z, z > 0
and τz,t = − µ

λt
z. (3)

This choice of ūz means starting with the initial capital equal to the past-year-end risk
reserve when z exceeds uα,t, i.e., in case of surplus, and borrowing to make the initial
capital equal to uα,t, when z is less than uα,t, i.e., in case of deficit. The adaptive
loading τz,t is taken the same as in (2), positive in case of deficit and negative in case
of surplus.

Bearing in mind that E
( ∑N(t)

i=1 Yi

)
= λt/µ, for the asset–liability balance one has

ERt(ūz, τz,t) =

{
uα,t − z, z 6 0,

uα,t, z > 0.

When z 6 0 (deficit), the sum |z| must be borrowed at the beginning of the forth-
coming insurance year. That sum borrowed amounts exactly to the average surplus
at the end of this year; it repays the borrowing.

Theorem 3. For z ∈ [a, b], −uα,t < a < 0 < b < λ
µ
t, and for the control (3)

ψt(ūz, τz,t) 6 α.

The assertion of Theorem 3, which proof contains in [9], is illustrated by Fig. 2.
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Figure 2. Two finite time (t = 200, µ = λ = 1) ruin probabilities ψt(uα,t, τz,t)
(increasing graph) and ψt(uα,t + z, τz,t) (decreasing graph) regarded
as functions of z; τz,t = − µ

λt
z, target value is uα,t = 33.2197, the

prescribed value of the probability of ruin is α = 0.1.
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